What is the best way to help individuals learn new words or re-learn words after brain damage?

Funding Round: 4 2016-2018

The project applies findings from the cognitive science of language production to education. In addition, it proposes a parallel investigation of language learning in typically-developing children learning their second language and brain-damaged adults re-learning the language they have lost. As such, the project lies at the intersection of the three fields of cognitive science, education, and medicine.

How does the hippocampus generate sequences of spatial activity that help animals find their way?

Funding Round: 4 2016-2018

This research project will reveal neural mechanisms of synaptic plasticity that allow hippocampal networks to flexibly generate goal-directed sequences for navigation and memory. Theoretical predictions may reveal new insights into neurological disorders affecting learning and memory.

Why does brain stimulation combined with adaptive working memory training lead improve cognition?

Funding Round: 3 2015-2017

This project examines whether the combination of electrical brain stimulation and cognitive training can improve cerebral efficiency and plasticity, while simultaneously testing a possible neurobiological mechanism for cognitive fatigue. Results will inform the design of interventions aimed at improving cognitive performance and learning capacity.

How does learning impact neural networks in the primary visual cortex?

Funding Round: 3 2015-2017

This project will investigate learning effects at the neural network level by combining two-photon calcium imaging in animals learning an orientation discrimination task with a state-space analysis approach. Our proposal aims to identify a fundamental learning mechanism that leverages the power of large networks. Our results will help to define the scale at which learning effects need to be studied in the cortex.

How does the brain control the processing of cooperating and competing information?

Funding Round: 3 2013-2015

Bridging computational engineering methods, brain imaging techniques, and cognitive neuroscience, this study will test whether the strength of different interactions among multiple brain areas is related to how well an individual person is able to learn different kinds of information. Results will inform our understanding of the mechanisms behind how different parts of the brain communicate with each other. The results also may have implications for treating ADHD, autism, and other disorders with altered interactions between brain areas, and for designing educational methods tailored to the learning strengths and weaknesses of a broad range of typically developing individuals.

What are the molecular changes that promote preservation of learning and memory during aging?

Funding Round: 3 2015-2017

Our project combines molecular and behavioral approaches to identify changes in the microRNA system that impact learning and memory. Potential implications of this work are the identification of microRNA pathways that promote successful cognitive aging may lead to therapeutic interventions to combat cognitive decline in aging, as well as other learning disorders.

Perceptual Learning in the Sensory Cortex: Circuit Dynamics and Regulation

Funding Round: 2 2014-2016

Learning new skills depend on changes in the underlying neural activity, and in many cases, are improved by active engagement of the learner. What large-scale changes in cortical encoding underlie perceptual learning? How does norepinephrine, a key neuromodulator involved in cognitive alertness, influence cortical circuits to promote perceptual learning? Our experiments will advance the science of learning toward an integrated view of the neurobiological basis of perceptual learning. Project results may facilitate development of methods for improving learning by directed manipulations of neuromodulatory systems in normal and diseased brains.

Do Tech-driven Learning Experiences Using Macaronic Language Improve Foreign Language Learning?

Funding Round: 2 2014-2016

This project bridges educational theory and novel techniques from artificial intelligence engineering and machine translation to develop a new web-based foreign language-learning platform. The research will produce novel, technology-driven learning experiences that, if successful, will provide new means of teaching foreign languages.

How Does The Sleep/Wake Cycle Regulate The Neural Plasticity Mechanisms that Impact Learning?

Funding Round: 2 2014-2016

This project integrates methodological and conceptual expertise on neural plasticity and circadian rhythms to understand the cellular mechanisms underlying daily fluctuations in learning. Besides providing a cellular understanding for circadian variations in learning, findings of this research may have significant implications for understanding learning deficits in schizophrenia and autism.

How Does The Hippocampus Support The Creation Of Memories?

Funding Round: 2 2014-2016

Our research combines neurophysiology with computational techniques to study neuronal patterns associated with memory formation in animals and humans. We are exploring the development of a completely novel methodology for measuring replay activity, with wide application to both animal models and human patients.